Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
2.
J Exp Zool A Ecol Integr Physiol ; 341(5): 487-498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38390697

RESUMO

The effects of red light-emitting diode (LED) light irradiation (630 nm, 0.5 W/m2) and melatonin (10-8 and 10-7 M) on oxidative stress and physiological responses in abalones exposed to high temperatures (28°C) were investigated. Changes in messenger RNA (mRNA) expressions of melatonin receptor (MT-R), heat shock protein 70 (HSP70), and antioxidant enzymes, as well as alterations in H2O2 levels in the hemolymph, were examined. The results revealed that high-temperature-stressed abalones treated with melatonin injections or exposed to red LED light showed a significant increase in MT-R mRNA expression, while HSP70 mRNA expression decreased. Notably, HSP70 mRNA expression levels in the red LED light-irradiated group were similar to those in the group injected with 10-8 M melatonin after 24 h exposure. Abalones treated with melatonin at 20°C or irradiated with red LED light exhibited decreased H2O2 levels and reduced antioxidant enzyme mRNA expression compared with those of the control group. However, the high-temperature environment induced oxidative stress in abalones, leading to increased antioxidant enzyme mRNA expression compared with that under 20°C conditions. Moreover, abalones exposed to high-temperature stress exhibited hepatopancreatic DNA damage, which was attenuated by melatonin treatment or red LED light irradiation. Hence, red LED light reduces oxidative stress, boosts antioxidant enzymes, and alleviates DNA damage in high-temperature-stressed abalones, akin to 10-8 M melatonin treatment. Therefore, considering the practical challenges of continuous melatonin administration to abalones, utilizing red LED light emerges as a practical, effective alternative to protect abalones from oxidative stress compared to 10-8 M melatonin treatment.


Assuntos
Antioxidantes , Gastrópodes , Luz , Melatonina , Melatonina/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Gastrópodes/efeitos da radiação , Temperatura Alta/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Peróxido de Hidrogênio , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Receptores de Melatonina/metabolismo , Receptores de Melatonina/genética , Luz Vermelha
3.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255990

RESUMO

Plants monitor day length and memorize changes in temperature signals throughout the day, creating circadian rhythms that support the timely control of physiological and metabolic processes. The DEHYDRATION-RESPONSE ELEMENT-BINDING PROTEIN 1/C-REPEAT BINDING FACTOR (DREB1/CBF) transcription factors are known as master regulators for the acquisition of cold stress tolerance, whereas PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is involved in plant adaptation to heat stress through thermomorphogenesis. Recent studies have shown that circadian clock genes control plant responses to temperature. Temperature-responsive transcriptomes show a diurnal cycle and peak expression levels at specific times of throughout the day. Circadian clock genes play essential roles in allowing plants to maintain homeostasis by accommodating temperature changes within the normal temperature range or by altering protein properties and morphogenesis at the cellular level for plant survival and growth under temperature stress conditions. Recent studies revealed that the central oscillator genes CIRCADIAN CLOCK ASSOCIATED 1/LATE ELONGATED HYPOCOTYL (CCA1/LHY) and PSEUDO-RESPONSE REGULATOR5/7/9 (PRR5/7/9), as well as the EVENING COMPLEX (EC) genes REVEILLE4/REVEILLE8 (REV4/REV8), were involved in the DREB1 pathway of the cold signaling transcription factor and regulated the thermomorphogenesis gene PIF4. Further studies showed that another central oscillator, TIMING OF CAB EXPRESSION 1 (TOC1), and the regulatory protein ZEITLUPE (ZTL) are also involved. These studies led to attempts to utilize circadian clock genes for the acquisition of temperature-stress resistance in crops. In this review, we highlight circadian rhythm regulation and the clock genes involved in plant responses to temperature changes, as well as strategies for plant survival in a rapidly changing global climate.


Assuntos
Relógios Circadianos , Temperatura , Relógios Circadianos/genética , Temperatura Baixa , Ritmo Circadiano/genética , Clima
4.
Fish Shellfish Immunol ; 144: 109277, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072138

RESUMO

Along with environmental pollution caused by rapid economic development and industrialization, plastic waste is emerging as a global concern in relation to marine ecosystems and human health. Among the microplastics, fiber-type microfibers (MF) and bisphenol A (BPA), which are widely used as plasticizers, do not decompose well in the ocean, and tend to accumulate in organisms, generating an increased oxidative stress response. This study investigated the abalones' antioxidant and cell death responses following exposure to the environmental pollutants MF and BPA. Levels of malondialdehyde (MDA) and DNA damage increased over time, demonstrating the degree of lipid peroxidation and DNA damage in abalones exposed to individual and combined environmental conditions of MF and BPA. Compared to the single MF and BPA exposure groups, the combined exposure group showed a higher expression of antioxidant enzymes. A similar pattern was seen in the expression of the apoptosis enzyme caspase-3. Both MF and BPA caused oxidative stress and antioxidant enzymes were expressed to alleviate it, but it is believed that cell damage occurred because the stress level exceeded the allowed range.


Assuntos
Antioxidantes , Gastrópodes , Humanos , Animais , Antioxidantes/metabolismo , Microplásticos , Plásticos/toxicidade , Bioacumulação , Ecossistema , Estresse Oxidativo , Gastrópodes/genética , Gastrópodes/metabolismo
5.
Ecotoxicol Environ Saf ; 270: 115825, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101975

RESUMO

Microplastics (MP) are harmful, causing stress in aquatic species and acting as carriers of hydrophobicity. In aquatic environments, benzo[α]pyrene (BaP) is an endocrine-disrupting chemical that accumulates in the body and causes toxic reactions in living organisms. We investigated the effects of single and combined microbead (MB) and BaP environments on goldfish antioxidant response and apoptosis. For 120 h, goldfish were exposed to single (MB10, MB100, and BaP5) and combined (MB10+BaP5 and MB100+BaP5) environments of 10 and 100 beads/L of 0.2 µm polystyrene MB and 5 µg/L BaP. We measured MB and BaP bioaccumulation as well as plasma parameters including ALT, AST, and glucose. The level of oxidative stress was determined by evaluating lipid peroxidation (LPO) and total antioxidant capacity (TAC) in plasma, as well as antioxidant-related genes for superoxide dismutase and catalase (SOD and CAT) and caspase-3 (Casp3) mRNA expression in liver tissue. The TUNEL assay was used to examine SOD in situ hybridization and apoptosis in goldfish livers. Except for the control group, plasma LPO levels increased at the end of the exposure period in all experimental groups. TAC increased up to 24 h of exposure and then maintained a similar level until the trial ended. SOD, CAT, and Casp3 mRNA expression increased substantially up to 120 h as the exposure concentration and time increased. The TUNEL assay revealed more signals and apoptotic signals in the combined exposure environments as a consequence of SOD in situ hybridization than in single exposure environments. These results suggest that combined exposure to toxic substances causes oxidative stress in organisms, which leads to apoptosis.


Assuntos
Antioxidantes , Carpa Dourada , Pirenos , Animais , Antioxidantes/metabolismo , Carpa Dourada/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Bioacumulação , Microesferas , Plásticos/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Fígado/metabolismo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo
6.
Hortic Res ; 10(12): uhad239, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094586

RESUMO

Flavonols are the major class of flavonoids of green Chinese cabbage (Brassica rapa subsp. pekinensis). The B. rapa genome harbors seven flavonol synthase genes (BrFLSs), but they have not been functionally characterized. Here, transcriptome analysis showed four BrFLSs mainly expressed in Chinese cabbage. Among them, only BrFLS1 showed major FLS activity and additional flavanone 3ß-hydroxylase (F3H) activity, while BrFLS2 and BrFLS3.1 exhibited only marginal F3H activities. We generated BrFLS1-knockout (BrFLS1-KO) Chinese cabbages using CRISPR/Cas9-mediated genome editing and obtained transgene-free homozygous plants without off-target mutation in the T1 generation, which were further advanced to the T2 generation showing normal phenotype. UPLC-ESI-QTOF-MS analysis revealed that flavonol glycosides were dramatically decreased in the T2 plants, while dihydroflavonol glycosides accumulated concomitantly to levels corresponding to the reduced levels of flavonols. Quantitative PCR analysis revealed that the early steps of phenylpropanoid and flavonoid biosynthetic pathway were upregulated in the BrFLS1-KO plants. In accordance, total phenolic contents were slightly enhanced in the BrFLS1-KO plants, which suggests a negative role of flavonols in phenylpropanoid and flavonoid biosynthesis in Chinese cabbage. Phenotypic surveys revealed that the BrFLS1-KO Chinese cabbages showed normal head formation and reproductive phenotypes, but subtle morphological changes in their heads were observed. In addition, their seedlings were susceptible to osmotic stress compared to the controls, suggesting that flavonols play a positive role for osmotic stress tolerance in B.rapa seedling. In this study, we showed that CRISPR/Cas9-mediated BrFLS1-KO successfully generated a valuable breeding resource of Chinese cabbage with distinctive metabolic traits and that CRISPR/Cas9 can be efficiently applied in functional Chinese cabbage breeding.

7.
Aquat Toxicol ; 263: 106684, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37677861

RESUMO

We confirmed antioxidant-related gene expression, bioaccumulation, and cell damage following exposure to various microplastics in vivo and in vitro in the goldfish Carassius auratus. Exposure of C. auratus to a 500 µm fiber-type microplastic environment (MF; 10 and 100 fibers/L) and two sizes (0.2 and 1.0 µm) of beads (MB; 10 and 100 beads/L) for 120 h increased superoxide dismutase (SOD) mRNA expression in the liver until 24 h followed by a decrease. Whereas, catalase (CAT) mRNA expression increased from 12 h to the end of the in vivo experiment. In vitro experiments were conducted with diluted microfibers (1 and 5 fibers/L) and microbeads (1 and 5 beads/L) using cultured liver cells. The results of SOD and CAT mRNA expression analysis conducted in vitro showed a tendency similar to those of experiments conducted in vivo. The H2O2 level increased in the high-concentration experimental groups compared with that in the low-concentration groups of 0.2-µm beads. In addition, the H2O2 level increased in both MF and MB groups from 12 h of exposure. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in plasma were used as indicators of liver damage in fish. The ALT and AST levels increased up to 120 h after exposure. Caspase-3 (casp-3) mRNA expression was higher in the MB group than in the MF group. We visually confirmed liver casp-3 mRNA signals using in situ hybridization. The degree of DNA damage in the MF and MB high-concentration groups increased with the exposure time. The tail length and percent of DNA in the tail of the MB group were significantly higher than those of the MF group, confirming that DNA damage was greater in the MB group. Both fiber- and bead-type microplastics induced oxidative stress in C. auratus, but the bead-type induced greater stress than the fiber-type.


Assuntos
Antioxidantes , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Plásticos , Carpa Dourada/genética , Carpa Dourada/metabolismo , Bioacumulação , Peróxido de Hidrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fígado/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37394129

RESUMO

Microplastics, owing to their hydrophobic properties and the various chemicals used in their production, can act as carriers of persistent organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs). In this study, we exposed the goldfish Carassius auratus to benzo[α]pyrene (BaP, 10 µg/L), a representative PAH, and micro-polystyrene plastic (MP; 10 and 100 beads/L), of size 1.0 µm, as a single or complex environmental stressor, and evaluated the stress response and the resulting DNA damage. The expression of CRH and ACTH mRNA in the pituitary gland and hypothalamus, of the hypothalamus-pituitary-interrenal (HPI) axis, increased significantly after 6 h of exposure. Plasma cortisol levels showed a similar trend to the expression of stress-regulating genes along the HPI axis, and a significant increase was observed in the combined exposure groups (BaP + LMP [low-concentration MP] and BaP + HMP [high-concentration MP]) compared to those in the single exposure group. H2O2 concentration and CYP1A1 and MT mRNA expression levels in the liver were significantly higher in the combined exposure groups compared with in the single exposure groups. In situ hybridization revealed a similar pattern of MT mRNA expression, and many signals were observed in the BaP + HMP group. Furthermore, the BaP + HMP group showed more DNA damage, and the degree of DNA damage increased with exposure time for all experimental groups, except for the control group. Therefore, exposure to BaP and MP alone can induce stress in goldfish; however, when a combination of both substances is provided, their synergistic effect leads to increased stress and DNA damage. MP was confirmed to be a more serious stress-inducing factor in goldfish than BaP, based on the expression levels of stress-regulating genes along the HPI axis.


Assuntos
Plásticos , Poliestirenos , Animais , Carpa Dourada/genética , Carpa Dourada/metabolismo , Benzo(a)pireno/toxicidade , Peróxido de Hidrogênio/metabolismo , Sistema Endócrino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico
9.
Antioxidants (Basel) ; 12(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237869

RESUMO

Ocean warming and acidification can induce oxidative stress in marine species, resulting in cellular damage and apoptosis. However, the effects of pH and water temperature conditions on oxidative stress and apoptosis in disk abalone are poorly understood. This study investigated, for the first time, the effects of different water temperatures (15, 20, and 25 °C) and pH levels (7.5 and 8.1) on oxidative stress and apoptosis in disk abalone by estimating levels of H2O2, malondialdehyde (MDA), dismutase (SOD), catalase (CAT), and the apoptosis-related gene caspase-3. We also visually confirmed apoptotic effects of different water temperatures and pH levels via in situ hybridization and terminal deoxynucleotidyl transferase dUTP nick end labeling assays. The levels of H2O2, MDA, SOD, CAT, and caspase-3 increased under low/high water temperature and/or low pH conditions. Expression of the genes was high under high temperature and low pH conditions. Additionally, the apoptotic rate was high under high temperatures and low pH conditions. These results indicate that changes in water temperature and pH conditions individually and in combination trigger oxidative stress in abalone, which can induce cell death. Specifically, high temperatures induce apoptosis by increasing the expression of the apoptosis-related gene caspase-3.

10.
Nat Commun ; 14(1): 1488, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932093

RESUMO

Reconstruction of skin equivalents with physiologically relevant cellular and matrix architecture is indispensable for basic research and industrial applications. As skin-nerve crosstalk is increasingly recognized as a major element of skin physiological pathology, the development of reliable in vitro models to evaluate the selective communication between epidermal keratinocytes and sensory neurons is being demanded. In this study, we present a three-dimensional innervated epidermal keratinocyte layer as a sensory neuron-epidermal keratinocyte co-culture model on a microfluidic chip using the slope-based air-liquid interfacing culture and spatial compartmentalization. Our co-culture model recapitulates a more organized basal-suprabasal stratification, enhanced barrier function, and physiologically relevant anatomical innervation and demonstrated the feasibility of in situ imaging and functional analysis in a cell-type-specific manner, thereby improving the structural and functional limitations of previous coculture models. This system has the potential as an improved surrogate model and platform for biomedical and pharmaceutical research.


Assuntos
Epiderme , Microfluídica , Técnicas de Cocultura , Epiderme/inervação , Queratinócitos , Pele , Células Receptoras Sensoriais , Células Cultivadas
11.
Lab Chip ; 23(3): 475-484, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36688448

RESUMO

Angiogenesis, the formation of new blood vessels from existing vessels, has been associated with more than 70 diseases. Although numerous studies have established angiogenesis models, only a few indicators can be used to analyze angiogenic structures. In the present study, we developed an image-processing pipeline based on deep learning to analyze and quantify angiogenesis. We utilized several image-processing algorithms to quantify angiogenesis, including a deep learning-based cell nuclear segmentation algorithm and image skeletonization. This method could quantify and measure changes in blood vessels in response to biochemical gradients using 16 indicators, including length, width, number, and nuclear distribution. Moreover, this procedure is highly efficient for the three-dimensional quantitative analysis of angiogenesis and can be applied to diverse angiogenesis investigations.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Dispositivos Lab-On-A-Chip
12.
Gen Comp Endocrinol ; 334: 114216, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681254

RESUMO

Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish. In the microfiber-exposed group, microfiber accumulation was confirmed in the gills and intestines. One week after exposure to two different concentrations of microfibers (500 and 1,000 fibers/L), the fish showed increased expression of gonadotropin-releasing hormone (GnRH) and luteinizing hormone receptor (LH-R) mRNA. From day 10 of exposure to the microfibers, there was an increase in the expression of the gonadotropin-inhibitory hormone (GnIH) mRNA and a decrease in the expression of GnRH and LH-R mRNA. There was an increase in the cytochrome P450 aromatase (CYP19a) mRNA expression and plasma estradiol (E2) concentration in the 1,000 fibers/L exposure group. High vitellogenin (VTG) mRNA expression was confirmed seven days after exposure in the 1,000 fibers/L group, which was consistent with the VTG mRNA expression signals detected in the liver using in situ hybridization. These results suggest that microfiber ingestion may cause short-term endocrinal disruption of the HPG axis in male medaka, which in turn may interfere with their normal maturation process.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Masculino , Oryzias/genética , Oryzias/metabolismo , Plásticos/metabolismo , Microplásticos/metabolismo , Reprodução , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/metabolismo , Vitelogeninas/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-36563949

RESUMO

Fiber-type microplastics are major anthropogenic contaminants of marine environments. They are released mainly during cloth washing and are discharged from wastewater treatment plants into aquatic environments. This study aimed to evaluate whether microfiber exposure causes oxidative stress and cell damage in medaka (Oryzias latipes Temminck and Schlegel 1846). Fish were exposed to one of two different concentrations (500 and 1000 fibers/L) of a polyester-based microfiber (MF) for 21 days, and the degree of cell damage and changes in expression of antioxidant enzymes were investigated. Fish survival decreased with increasing concentrations of MF. The expression levels of superoxide dismutase (SOD) and catalase (CAT) increased in MF-exposed groups compared to those in the control. SOD activity increased compared to the control group, and MF exposure induced a significant increase in both SOD activity and mRNA expression over time. CAT mRNA expression increased from day 10 onwards following exposure. Plasma malondialdehyde content increased significantly on day 7 of exposure in the 1000 fiber/L group and on day 10 in the 500 fiber/L group. Caspase-3 mRNA expression significantly increased until day 10 of exposure. A terminal transferase dUTP nick end labeling assay confirmed increased apoptosis, and a comet assay demonstrated that higher DNA damage occurred in response to increased MF concentration and exposure time. In conclusion, we confirmed that MF exposure affects antioxidant reactions in fish, thus inducing oxidative stress, apoptosis, and DNA damage. In addition, a comprehensive understanding of MF pollution in aquatic systems is urgently required.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Oryzias/metabolismo , Plásticos , Estresse Oxidativo , Superóxido Dismutase/metabolismo , RNA Mensageiro/metabolismo , Poluentes Químicos da Água/metabolismo
14.
Front Plant Sci ; 13: 1034893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582649

RESUMO

Introduction: The monoterpenoid linalool and sesquiterpenoid costunolide are ubiquitous plant components that have been economically exploited for their respective essential oils and pharmaceutical benefits. In general, monoterpenes and sesquiterpenes are produced by the plastid 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytosolic mevalonate (MVA) pathways, respectively. Herein, we investigated the individual and combinatorial potential of MEP and MVA pathway genes in increasing linalool and costunolide production in Nicotiana benthamiana. Methods: First, six genes from the MEP (1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, geranyl pyrophosphate synthase, and linalool synthase) and MVA (acetoacetyl-CoA-thiolase, hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, germacrene A synthase, germacrene A oxidase, and costunolide synthase) pathways were separately cloned into the modular cloning (MoClo) golden gateway cassette. Second, the cassettes were transformed individually or in combination into the leaves of N. benthamiana by agroinfiltration. Results and discussion: Five days post infiltration (DPI), all selected genes were transiently 5- to 94-fold overexpressed. Quantification using gas chromatography-Q-orbitrap-mass spectrometry (GC-Q-Orbitrap-MS) determined that the individual and combinatorial expression of MEP genes increased linalool production up to 50-90ng.mg-1 fresh leaf weight. Likewise, MVA genes increased costunolide production up to 70-90ng.mg-1 fresh leaf weight. Our findings highlight that the transient expression of MEP and MVA pathway genes (individually or in combination) enhances linalool and costunolide production in plants.

15.
Exp Mol Med ; 54(11): 1955-1966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36376495

RESUMO

NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.


Assuntos
Proteína Homeobox Nanog , Células-Tronco Neurais , Encéfalo/metabolismo , Hipóxia/metabolismo , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Animais
16.
Cells ; 11(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36078142

RESUMO

Apigetrin (7-(ß-D-glucopyranosyloxy)-4',5-dihydroxyflavone), a glycoside bioactive dietary flavonoid derived from Taraxacum officinale and Teucrium gnaphalodes, is known to possess anticancer, antioxidant, and anti-inflammatory effects on numerous cancers. In the present study, we examined the effect of apigetrin in Hep3B hepatocellular cancer cell line (HCC). Apigetrin inhibited cell growth and proliferation of Hep3B cells, as confirmed by MTT and colony formation assay. We used apigetrin at concentrations of 0, 50, and 100 µM for later experiments. Of these concentrations, 100 µM of apigetrin showed a significant effect on cell inhibition. In apigetrin-treated Hep3B cells, cell cycle arrest occurred at the G2/M phase. Apoptosis and necroptosis of Hep3B cells treated with apigetrin were confirmed by Annexin V/propidium iodide (PI) staining and flow cytometry results. Morphological observation through 4',6-diamidino-2-phenylindole (DAPI) staining showed intense blue fluorescence representing chromatin condensation. Hematoxylin staining showed necroptotic features such as formation of vacuoles and swelling of organelles. Apigetrin increased reactive oxygen species (ROS) levels in cells, based on fluorescence imaging. Furthermore, the underlying mechanism involved in the apoptosis and necroptosis was elucidated through western blotting. Apigetrin up-regulated TNFα, but down-regulated phosphorylation of p-p65, and IκB. Apigetrin inhibited the expression of Bcl-xl but increased Bax levels. Up-regulation of cleaved PARP and cleaved caspase 3 confirmed the induction of apoptosis in apigetrin-treated Hep3B cells. Additionally, necroptosis markers RIP3, p-RIP3, and p-MLKL were significantly elevated by apigetrin dose-dependently, suggesting necroptotic cell death. Taken together, our findings strongly imply that apigetrin can induce apoptosis and necroptosis of Hep3B hepatocellular cancer cells. Thus, apigetrin as a natural compound might have potential for treating liver cancer.


Assuntos
Apigenina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Apigenina/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , NF-kappa B/metabolismo , Necroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
17.
Osong Public Health Res Perspect ; 13(4): 263-272, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36097748

RESUMO

OBJECTIVES: It is crucial to establish the characteristics of coronavirus disease 2019 (COVID-19) outbreaks at army training centers to develop preventive measures. Therefore, this study aimed to determine the COVID-19 transmission patterns and risk factors in a sequence of outbreaks at an army training center from June to August 2021. METHODS: This study included 1,324 trainees at an army training center where outbreaks occurred from June to August 2021. The outbreak was qualitatively analyzed according to the period, attack rate, demographic characteristics, vaccination history, and living areas. An aerodynamic experiment was performed to evaluate aerosol transmission in living areas. RESULTS: Three outbreaks occurred at the army training center from June to August 2021. The first, second, and third outbreaks lasted for 32, 17, and 24 days, and the attack rates were 12.8%, 18.1%, and 8.9%, respectively. Confirmed cases were distributed in all age groups. Recruits and the unvaccinated were at higher risk for COVID-19. The aerodynamic experiment verified the possibility of aerosol transmission within the same living area. CONCLUSION: COVID-19 transmission at army training centers should be minimized through quarantine and post-admission testing during the latency period as part of integrated measures that include facility ventilation, vaccination, indoor mask-wearing, and social distancing.

18.
Int J Mol Sci ; 23(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35955826

RESUMO

Photosensory proteins known as photoreceptors (PHRs) are crucial for delineating light environments in synchronization with other environmental cues and regulating their physiological variables in plants. However, this has not been well studied in the Brassica genus, which includes several important agricultural and horticultural crops. Herein, we identified five major PHR gene families-phytochrome (PHY), cryptochrome (CRY), phototropin (PHOT), F-box containing flavin binding proteins (ZTL/FKF1/LKP2), and UV RESISTANCE LOCUS 8 (UVR8)-genomic scales and classified them into subfamilies based on their phylogenetic clustering with Arabidopsis homologues. The molecular evolution characteristics of Brassica PHR members indicated indirect expansion and lost one to six gene copies at subfamily levels. The segmental duplication was possibly the driving force of the evolution and amplification of Brassica PHRs. Gene replication retention and gene loss events of CRY, PHY, and PHOT members found in diploid progenitors were highly conserved in their tetraploid hybrids. However, hybridization events were attributed to quantitative changes in UVR8 and ZTL/FKF1/LKP2 members. All PHR members underwent purifying selection. In addition, the transcript expression profiles of PHR genes in different tissue and in response to exogenous ABA, and abiotic stress conditions suggested their multiple biological significance. This study is helpful in understanding the molecular evolution characteristics of Brassica PHRs and lays the foundation for their functional characterization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassica , Proteínas F-Box , Fitocromo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/genética , Brassica/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Criptocromos/genética , Evolução Molecular , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas , Fototropinas/genética , Filogenia , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806003

RESUMO

The CRISPR/Cas9 site-directed gene-editing system offers great advantages for identifying gene function and crop improvement. The circadian clock measures and conveys day length information to control rhythmic hypocotyl growth in photoperiodic conditions, to achieve optimal fitness, but operates through largely unknown mechanisms. Here, we generated core circadian clock evening components, Brassica rapa PSEUDO-RESPONSE REGULATOR (BrPRR) 1a, 1b, and 1ab (both 1a and 1b double knockout) mutants, using CRISPR/Cas9 genome editing in Chinese cabbage, where 9-16 genetic edited lines of each mutant were obtained. The targeted deep sequencing showed that each mutant had 2-4 different mutation types at the target sites in the BrPRR1a and BrPRR1b genes. To identify the functions of BrPRR1a and 1b genes, hypocotyl length, and mRNA and protein levels of core circadian clock morning components, BrCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) and BrLHY (LATE ELONGATED HYPOCOTYL) a and b were examined under light/dark cycles and continuous light conditions. The BrPRR1a and 1ab double mutants showed longer hypocotyls, lower core circadian clock morning component mRNA and protein levels, and a shorter circadian rhythm than wildtype (WT). On the other hand, the BrPRR1b mutant was not significantly different from WT. These results suggested that two paralogous genes may not be associated with the same regulatory function in Chinese cabbage. Taken together, our results demonstrated that CRISPR/Cas9 is an efficient tool for achieving targeted genome modifications and elucidating the biological functions of circadian clock genes in B. rapa, for both breeding and improvement.


Assuntos
Brassica rapa , Brassica , Brassica/genética , Brassica rapa/genética , Sistemas CRISPR-Cas , China , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Mutagênese , Melhoramento Vegetal , RNA Mensageiro
20.
Sci Rep ; 12(1): 11449, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794197

RESUMO

The protozoan parasite Toxoplasma gondii (T. gondii) causes one of the most common human zoonotic diseases and infects approximately one-third of the global population. T. gondii infects nearly every cell type and causes severe symptoms in susceptible populations. In previous laboratory animal studies, T. gondii movement and transmission were not analyzed in real time. In a three-dimensional (3D) microfluidic assay, we successfully supported the complex lytic cycle of T. gondii in situ by generating a stable microvasculature. The physiology of the T. gondii-infected microvasculature was monitored in order to investigate the growth, paracellular and transcellular migration, and transmission of T. gondii, as well as the efficacy of T. gondii drugs.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Microfluídica , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Migração Transendotelial e Transepitelial , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA